(08 Marks) potential well. ## First/Second Semester B.E. Degree Examination, June/July 2015 Engineering Physics | 1- | 1. | | | | | |----------------|---|---|---|--|--| | Time: | 3 hrs. | | Max. Marks:100 | | | | 2 3 | Answer any FIVE full questions, choosing at Answer all objective type questions only in OI. Answer to objective type questions on sheets of Physical constants: Planck's constant $h=6.63$ Electron mass $m_e=9.11\times 1^-$ Newtron mass $m_n=1.67\times 1$ Boltzmann constant $k=1.67\times 1$ | MR sheet page 5 of the other than OMR will 4×10^{-34} J-S; 31 kg, velocity of light 0^{-27} kg, $\epsilon_0 = 8.85 \times 10^{-27}$ | The answer booklet. I not be valued. Int $c = 3 \times 10^8$ m/s, | | | | | PART - A | 00 | | | | | 1 a. | Choose the correct answers for the following: i) The law which describes black body radiating A) Stefan's law ii) Photoelectric effect established the A) wave nature of light C) particle nature of matter iii) Compton wavelength is given by λ = | ion spectrum comple C) Planck's law D) B) particle nature of D) wave nature of n | Rayliegh Jeans law | | | | | A) h/m_0c B) m_0c/h | C) $m_0 c/h^2$ | D) h^2/m_0c^2 | | | | | iv) De-Broglie wavelength of an electron acceler | | D) 11 / 11100 | | | | b.
c.
d. | | C) 1.226 µm roved the matter wave | (04 Marks) | | | | 2 a. | ii) Kinetic energy of an electron accelerated by a A) 50 eV B) 50 J iii) A wave function is an acceptable one if it is | C) h/8ma ² a potential of 50 volts C) 5 eV | D) $h^2/8a^2$ is $\frac{D}{D} = \frac{1}{5} J$ | | | | | A) finite everywhere C) single valued everywhere iv) The probability of finding a free particle trainfinite height, in the first excited state at the A) 0.5 B) 1 | midpoint 'a/2' is C) 0 | properties well of width 'a' and D) 0.25. | | | | b. | State and explain Heisenberg's uncertainty princip | | (04 Marks) | | | | C. | c. Derive the eigen function and eigen value for a free particle in one dimensional, infini | | | | | d. The speed of an electron is measured as 4×10^5 m/s with 0.01% uncertainty. Calculate the minimum uncertainty involved in the position measurement simultaneously. (04 Marks) ## 10PHY12/22 | 3 | a. | Choose the correct answers | | | (04 Marks) | | | |---|--|---|------------------------------|---------------------------|---------------------|--|--| | | | i) Mobility of electrons in | | C) FAI | D) 11 E | | | | | | A) V _d /E | B) V _d E | C) E/V _d | D)eV _d E | | | | | | ii) When temperature incr A) decreases | B) remain the same | | D) reduces to rose | | | | | | iii) Fermi factor for $E = E_F$ | | C) increases | D) reduces to zero | | | | | | A) 1 | B) 0 | C) 1/2 | D) 20 | | | | | | iv) As per classical free el | | | | | | | | | A) m/ne ² τ | B) mne ² / τ | C) $ne^2/m\tau$ | D) $ne^2\tau/m$ | | | | | b. | , | | | (06 Marks) | | | | | c. | | | | | | | | | | impurity and temperature. | explain now does elec | tirical conductivity of a | (06 Marks) | | | | | d. | V above Fermi level | | | | | | | | | and 0.02 eV below Fermi le | evel at 200 k. | 0,00 | (04 Marks) | | | | | | | | 13 | (| | | | 4 | a. | Choose the correct answers | | (2) | (04 Marks) | | | | | | i) If the distance between | the plates of a capacit | or is doubled, the value | e of capacitance is | | | | | | A) doubled | | B) increased to four t | imes | | | | | | C) halved | 10 | D) remains the same | | | | | ii) The polarization that occurs in the frequency range 10 ¹³ Hz to 10 ¹⁶ Hz is | | | | | | | | | | | A) electronic | B) ionic | C) orientational | D) space charge | | | | | | iii) The relation connecting | | | | | | | | | | | , | $D)D = \epsilon/E$ | | | | | | iv) Which of the following | | | | | | | | b. | | B) mica | | D) iron. (06 Marks) | | | | | b. Give qualitative explanation for dia, Para and Ferro magnetisms.c. Explain the four types of electric polarizations and the effect of temperature on the | | | | | | | | | ٠. | Explain the four types of ele | ectric polarizations and | the effect of temperat | (06 Marks) | | | | | d. | When a NaCl crystal is sub | piected to an electric fi | eld of strength 1000 V | | | | | | | produced is 4.3×10^{-8} C/m ² | | | (04 Marks) | | | | | | produced is 4.5 × 10 °C/m | . Calculate the dielect | TIC CONSTAINT OF INACX. | (04 Marks) | | | | | | 4, | PART – B | | | | | | 5 | a. | Choose the correct answers | | | (04 Marks) | | | | | | i) Life time of an atom in | | f the order of | (04 Marks) | | | | | - | A) nano seconds | B) milliseconds | C) seconds | D) picoseconds | | | | | G | ii) In a He-Ne gas laser, th | | | | | | | 10 | 1 | A) 1:1 | B) 1:10 | C) 10:1 | D) 100:1 | | | | U, | * | iii) Pumping process in dio | de laser is by | | | | | | 9 | | A) optical pumping | B) forward bias | C) electric discharge | D) reverse bias | | | | | | iv) The method used in the | measurement of atmo | spheric pollutants using | g laser is called | | | | | | A) LIDAR | B) RADAR | C) SONAR | D) Holography | | | | | b. | Explain the terms: induced | absorption, spontaneo | ous emission and stim | ulated emission and | | | | | | obtain an expression for t | he energy density of | radiation under equil | librium in terms of | | | | | | Einsteins coefficients. | 1 0 | | (09 Marks) | | | | | C. | What are the requisites of a | | | (03 Marks) | | | | | d. | The average output power of | of a laser source emitt | ing beam of wavelengt | | | | | | Find the number of photons emitted per second by the source. (04 Mar | | | | | | | (03 Marks) | | | Value of the second sec | TIO. | | | | |-----|----|--|----------|------------------|----------------|----------------------------| | | | | Adya | Manga | | | | 6 | a. | Choose the correct answers for the following: (04 Mark | | | | (04 Marks) | | | | i) The acceptance angle of an optical fiber whose refractive indices of core and | | | | | | | | are 1.55 and 1.50 respectively when kep | | | D) 0 | 00 | | | | A) 45° B) 23° | | C) 32° | D) 3 | 90 | | | | ii) The number of modes supported by an o | | | | - G: | | | | A) 200 B) 20 | | C) 400 | D) 1 | 0 1/2 | | | | iii) Number of critical magnetic fields in a | | | | 92 | | | | A) zero B) one | | C) two | D) t | nree | | | | iv) The superconductor behaves like a perfe | ect | <u></u> | - D) 4 2 | | | | b. | A) Diamagnet B) paramagnet | | | | | | | U. | With neat diagrams describe three types of o | optical | libers based of | n propagation | (06 Marks) | | | c. | Distinguish between Type I and Type II sup | er cond | ductors | 6 | (06 Marks) | | | d. | Find out the ratio between the N.As of an | | | ractive indice | | | | | and of cladding 1.40, when kept in air and v | - | (0) | idetive maio | (04 Marks) | | | į. | is . | rator. | 1 | | (0,1,1,1,1,1,5) | | 7 | a. | Choose the correct answers for the following | 19: | (0) | | (04 Marks) | | | | i) The packing factor for bcc structure is _ | | | | | | | | A) 0.74 B) 0.52 | 0,0 | C) 0.48 | D) 0 | .68 | | | | ii) The co-ordination number for fcc struct | ure is | | | | | | | A) 12 B) 8 | _ | C) 6 | D) 1 | | | | | iii) Miller indices for a plane parallel to Y- | - Z plan | ne is | | | | | | A) (011) B) (100) | | C) (010) | D) (| 001) | | | | iv) Structure of NaCl is | | | | | | | | A) Simple cube B) bcc | | C) fcc | D) n | one of these. | | | b. | Describe Bragg spectrometer and explain | how th | e interplanar | | | | | | determined using it. | | | | (06 Marks) | | | c. | Define packing factor. Calculate the packing | g factor | rs for simple co | ubic and fcc s | structures. | | | | 70 | | | | (06 Marks) | | | d. | Copper has fcc structure with atomic radius | 0.1278 | 3 nm, Calculat | e the interpla | nar spacing for | | | | (321) plane. | | | | (04 Marks) | | | | | | | | | | 8 | a. | Choose the correct answers for the following | | | | (04 Marks) | | | | i) The state of matter around the nanosize | | | D) | 1 | | | | A) solid state B) mesoscopic | | C) liquid state | D) p | olasma state | | | C | (ii) Number of carbon atoms in a Bucky bal | | C) 12 | DV | 0 | | 10 | 1 | A) 70 B) 90 | | C) 12 | D) 6 | 0 | | (1) | .) | iii) Ultrasonics can be produced by A) photoelectric effect | | D) Commton o | ffact | | | 2 | | C) reverse piezo electric effect | | B) Compton e | | | | | | iv) Frequency of ultrasonic's is | | D) thermonic | emission | | | | | A) < 20 KHz B) > 20 KHz | 0 | 00 Hz D) b | atayoon 20 Uz | to 20 VIII | | | b. | | | 20 Hz D) be | | | | | U. | What is non destructive testing? Expla ulstrasonic to detect the flaws in a solid | | | | | | | | NDT. | . A150 | mension two | advantages | | | | c. | What is carbon nanotube? Distinguish b | etweer | SWCNTs an | d MWCNTs | (08 Marks) | | | d. | Explain any three applications of carbon | | | d IVI W CIVIS | . (05 Marks)
(03 Marks) | | | | and applications of caroon | ilano | aucs. | | (05 Marks) |